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Qudits, i.e. Quantum Multi-level Logics

� Q.C. replaces bit with qubit: two state quantum system, states � 0 � , � 1 �

� Multi-level logic: not bit but dit, values 0,1,. . . , d � 1

� Qudit: states � 0 � , � 1 � , . . . , � d � 1 �

– Single qudit state space H � 1 � d ��� 	 � 0 ��
 	 � 1 � 
 � � �
 	 � d � 1 ��
 � 	 d

– n-qudit state space

H � n � d � � � n
1H � 1 � d � �

c̄ � ��� � d� � n
	 � c̄ �
 � 	 dn
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Emulating Qudits with Qubits

� Scheme #1: Pack each qudit into

�

log2 d

�

qubits, n

�

log2 d

�

total

– Qubit circuits yield qudit circuits

– Some virtual two-qubit gates are qudit-local

– Heuristic: Hilbert space dimensions are fungible

� Scheme #2: Pack n qudits into

�

log2 dn
� �

� n
�

log2 d

�

qubits

– Single qudit levels spread across multiple qubits

– Circuit diagrams do not translate: not that fungible!
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Why Qudits?

� More efficient use of physical system, if all states may be controlled

� Trade-off: If d� 2� , fewer entangling gates, more local op’s

� More natural for some computations, especially (Hoyer, q-ph/9702028)
Fourier transform of � � dn � in case gcd � d � 2 � � 1

� Perhaps less decoherence or better error correction if d �

� 2
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Motivation: Quoctet 87Rb Hyperfine Levels
(d � 8) & Allowed Couplings
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Motivation: Quoctet 87Rb Hyperfine Levels
(d � 8) & Allowed Couplings Cont.

� Template One-qudit Hamiltonians:
Hx

jk

� � k �� j � � � j �� k �

Hy
jk

� i � k � � j � � i � j � � k �

� Certain levels � j � , � k � allow atom-laser Hamiltonian:

HAL � jk� cos � φ � H
x
jk � sin � φ � H

y
jk

� Selection rule: only allow Hx
jk, Hy

jk for certain pairs � j � k � :

� 0 � 5 � � � 0 � 6 � � � 0 � 7 � � � 1 � 4 � � � 1 � 6 � � � 2 � 3 � � � 2 � 4 � � � 2 � 5 �
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Universality Problems

� Notation: U ��� � � � V � 	 � � � ; VV T� I� �

� U � d � for one-qudit unitary evolution, U � dn � for n-qudits

� Problem #1: Can we build all one-qudit unitary evolutions using time
evolution by Hamiltonians allowed by our selection rule?

� Problem #2: Given a nice two-qudit Hamiltonian,
e.g. H� � d � 1 � � � d � 1 � � d � 1 � � � d � 1 � ,
can we construct evolutions for all V � U � d2n � ?
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Universality Technique: QR Decompositions

� QR Decomposition: Any M � 	 � � � factors M� RU , UUT� I� , R semi-
upper triangular

– Columns of U : Hermitian o.n. basis of 	 �

– One method: Gram Schmidt o.n. of columns of M

– Other methods: build unitaries U1,. . . , Up, each adding
subdiagonal 0’s to partial products UkUk � 1� � � UpM

� Uq may be Givens rotations
Uq act as V � U � 2 � on 	 � j � 
 	 � k � , identity else

� Uq may be Householder reflections
For fixed � ψ � , reflect so Uq � ψ � � � ψ � ψ � � 0 �
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QR Reduction Using Givens Rotations
��

� � � �

� � � �

� � � �

� � � �
��

V2 � 3� � ��
� � � �

� � � �

� � � �

0 � � �
��

V1 � 2� �

��
� � � �

� � � �

0 � � �

0 � � �
��

V2 � 3� � ��
� � � �

� � � �

0 � � �

0 0 � �
��

V0 � 1� �

��
� � � �

0 � � �

0 � � �

0 0 � �
��

V2 � 3� V1 � 2� � ��
� � � �

0 � � �

0 0 � �

0 0 0 �
��
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Universality Technique:
QR Decompositions Cont.

� Coupling graph: short-hand describing allowed Hx
j � k, Hy

j � k

0 7

6 5

1 2 3

4

� � �

���
���

� � �

� Notation: any unitary 2 � 2 matrix V , with V jk the associated Givens
rotation in 	 � j � 
 	 � k �
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Coupling Graph-Based QR Decomposition:
One-qudit Universality

� Euler angle technique: Givens rotations for coupled � j � , � k �

V jk � eiϕexp � it0Hx
jk � exp � it1Hy

jk � exp � it2Hx
jk �

� Problem #1 Restatement: Build U � U � d � using a restricted set of
Givens rotations encoded in the coupling graph

� This is possible using an optimal number of V jk:

– Build spanning tree of coupling graph

– Introduce zero at entry of leaf, remove leaf, etc.
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Two-qudit Generalizations of CNOT

� Generalization #1: � 1 � σx
 Id� 2 � ,
exchanging � 0 ��� � 1 � , �� ��� � �� � else

� Increment gate INC: one qudit modular addition,

�� � �� � � � � � 1 mod d � ; �� � is denoted in circuits as 	

� Generalization #2: � �� � � � 1 � �� � �

CINC denoted in circuits by old CNOT symbol

� CINC constructible from U � d � , � 1 � σx
 Id� 2 �

� Using ancillas, U � d ��
 � � 1 � V � � is exact-universal
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QR Technique for Two-qudits, i.e. U

�

d2

�

� Barenco et al (q-ph/9503016): Any 2 � 2 unitary V� eiϕAσxBσxCσx,
such that ABC� Id

� Determinant one Givens rotation V jk, implicitly buffer A, B, C by Id� 2:

� 1 � V jk � � Id2� d
 � V jk �

� � ABC � 
 � ABC � 
 � � �
 � ABC � 
 � AσxBσxC �

� � A � Id � � 1 � σx
 Id� 2 � � B � Id � � 1 � σx
 Id� 2 � � C � Id �

� Another QR Decomposition: Gate library U � d � , � 1 � σx
 Id� 2 � builds
any V � U � d2 �
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QR Technique: Two Qudit Universal

� n-Qudit Universal

� Suffices to use two-qudits to build any Givens rotation in U � dn �


 d� d1� 1 � 
 d1 � 1 
 d� d1� 1 � � 
 d1 � 1


 d� d2� 1 � 
 d2 � 1 
 d� d2� 1 � � 
 d2 � 1

�
�


 d� d3� 1 � 
 d3 � 1

�
�


 d� d3� 1 � � 
 d3 � 1

V V V

� 0 � 76540123 76540123 � � 76540123 76540123 � 0 �

� 0 � 76540123 76540123 � 76540123 76540123 � 0 �
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QR-Universality Summary Slide

� Laser Hamiltonians Hx
jk � H

y
jk

� � all one-qubit evolutions in U � d �

– Coupling graph must be connected

– If connected, no extra pulses required in general

� One-qudit unitaries, � 1 � σx
 Id� 2 � � � all two-qudit unitaries V � U � d2 �

– Much simpler construction for � �� � � � 1 � �� � �

� Two-qudit unitaries� � all n-qudit unitaries V � U � dn �
– Requires up to

�

n � log2 d

�

ancilla
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Sard’s Theorem

Def: A critical value of a smooth function of smooth manifolds f : M � N is
any n � N such that there is some p � M with f � p � � n with the linear map
of tangent spaces � d f � p : TpM � TnN not onto.

Sard’s theorem: The set of critical values of any smooth map has
measure zero.

Corollary: If dim M � dim N, then image(f) is measure 0.

� U � � � is a smooth submanifold of 	 � � � , (real) dimension� 2

� Qudit circuit topology τ with k two-qudit gates V � U � d2 � induces smooth
evaluation map fτ : U � 1 � � U � d2 � k � U � dn �
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Dimension-Based Bounds

� Simple gate library: V � U � d2 � , two-qudit unitaries

� Consequence: Any universal circuit must contain at least d2n

� d4 two-
qudit gates

– Finer analysis often possible

– (Countably) Many circuits with too few boxes will not help

� h � n � � Ω � f � n � � means h � n � � C f � n � , some C and all n � 1

� Universality requires Ω � d2n � two-qudit gates
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State-Synthesis Lower Bounds

� State-Synthesis Problem: Given � ψ � � H � n � d � , construct small circuit
realizing unitary U such that U � 0 � � � ψ �

� Projection of matrix on first column: smooth map

� dim � H � n � d � � 2dn

� Result: At least 2dn

� d4

� Ω � dn � two-qudit gates for state synthesis
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More Notation for Asymptotics

� h � n � � O � f � n � � means h � n �� C f � n � , all n � 1

� h � n � � Θ � f � n � � means both h � n � � Ω � f � n � � , h � n � � O � f � n � �

� If a circuit problem requires Θ � f � n � � gates, i.e. C1 f � n � gates required &
C2 f � n � construction exists (C1 � C2 � )
then a O � f � n � � gate construction is asymptotically optimal

� Construction of V � U � dn � of last section needs O � n2d2n � gates, not
asymptotically optimal
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Notation:

�

C

�

V

�

� V � U � d � , C� � C1C2� � � Cn � length n word from � 0 � 1 �� � � � d � 1 � 
 � � � 
 � T �

Only one T allowed

� � � C � V � : n-qudit operator, applies V to the qudit of T iff all # � s match

� Case Cn� T :

� � C1C2� � � Cn� 1T � � V � � c1c2� � � cn � � � c1� � � cn� 1 � � V � cn � � c j� C j or C j� �

� c1� � � cn� 1cn � � else

� Case C j� T , j � n: χn
j SWAP by � j �� � n � , C̃� � C1C2� � � C j� 1CnC j � 1� � � Cn� 1T �

� C � V � � χn
j � C̃ � V � χ

n
j
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State-Synthesis Notation

� State-Synthesis Equation: ∏p
k � 1 � � C � k � � V � k � † � � 0 � � � ψ �

� Adjoint Householder: ∏p
k � 1 � � C � p � k � 1 � � V � p � k � 1 � � � ψ � � � 0 �

� One-qudit Answer: Householder W , W � ψ � � � 0 �

�
�

�

� η � � � ψ � � � ψ � ψ � �

0

�

ψ

�

�
� �

0

�

ψ

�

�
�

� 0 �

W � Id � � 2 � � η � η � � � η � � η �

� Asymptotically optimal: In n-qudits, solve so total # of
control boxes� Cdn (See slide 16.)
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Clubsuit Householder Reduction

� Our Answer: p� � dn � 1 � � � d � 1 � , one control only each C � k �

� Circuit: Topology recursive, V � k � are not

� Topology built using � -sequence

� Terms � s j �
� dn� 1 � � � d� 1 �

j � 1 : word from alphabet � 0 � 1 �� � � � d � 1 � 
 � � �

– #’s encode amplitudes to zero

– � is stop-symbol, places T in C � k �
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Clubsuit Householder Reduction Cont.

� Constructing nth
� -sequence

– In order, write �� � s to sequence
for every lead dit and every s in � n � 1 � st sequence

– Append n-fold � � � � � �

� Qutrit (d� 3) sample:

n � -sequence, d � 3
1 �

2 0 � , 1 � , 2 � , � �

3 00 � , 01 � , 02 � , 0 � � , 10 � , 11 � , 12 � , 1 � � , 20 � , 21 � , 22 � , 2 � � , � � �

4 000 � , 001 � , 002 � , 00 � � , 010 � , 011 � , 012 � , 01 � � , 020 � , 021 � , 022 � , 02 � � , 0 � � �

100 � , 101 � , 102 � , 10 � � , 110 � , 111 � , 112 � , 11 � � , 120 � , 121 � , 122 � , 12 � � , 1 � � �

200 � , 201 � , 202 � , 20 � � , 210 � , 211 � , 212 � , 21 � � , 220 � , 221 � , 222 � , 22 � � , 2 � � � , � � � �
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Clubsuit Householder Reduction Cont.

2 Line 1 �

1 Line 2 1

0 Line 3 �

0 Line 4 �

� V Line 5 T

� Line 6 �

� Line 7 �

� � � C � V � given V , term t� 2100 � � � , one control, first �

� 0 over first �

� T at top � , V a d � d Householder to zero amplitudes 2100� 00,� � 1
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Clubsuit Householder Reduction Summary

� Result: ∏p
k � 1 � � C � p � k � 1 � � V � p � k � 1 � � � ψ � � � 0 �

– p� � dn � 1 � � � d � 1 � � O � dn �
– Each C � k � , at most one control� � two-qudit gate

– Delicate argument (omitted): no � � C � k � � V � k � � destroys 0-amplitudes
created by � � C � j � � V � j � � , j � k

� Result: Asymptotically Optimal State-Synthesis
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Zeroes Introduced for 3 Qutrits:
Lower 2 Entries from Depth-First Search of Tree
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Householder U

�

ψ

�

�

�

j

�

, j � 0

� � � C̃ � Ṽ � : Similary transform of � � C � V � by � n

� � 1
 d�

C̃k �

�
�

�

� � Ck� �

T � Ck� T
� Ck � dk � mod d � Ck � � 0 � 1 �� � � � d � 1 �

Ṽ � �
 dq � V �
 d � dq � � where Cq� T

� Notice: � j � � �

� n

� � 1 �
 d� � � � 0 � for j� d1� � � dn

– Compute � ϕ � � � � n

� � 1
 d � d� � � ψ �

– Produce ∏p
k � 1 � � C � p � k � 1 � � V � p � k � 1 � � � ϕ ��� � 00� � � 0 �

– Consequence: ∏p
k � 1 � � C̃ � p � k � 1 � � Ṽ � p � k � 1 � � � ψ � � � j �
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Triangle Algorithm: Optimal n-qudit Unitary
Circuit

� for each of d block columns, width dn� 1

– Triangulate dn� 1 � dn� 1 diagonal subblock, recursive, extra control

– for each of dn� 1 columns j� dn� 1dn� 2� � � d1 in block-column

� Use � -Householder to zero each subcol below block diagonal
onto dn� 1dn� 2� � � d1-amplitude

� Use � � � T dn� 1dn� 2� � � d1 � � V � to clear remaining subdiagonal
entries

� Makes more sense after watching movie
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Number of Control Boxes for Triangle

� O � d2n � control boxes: Asymptotically Optimal # of Gates from U � d2 �

d 2 3 4 5 6 7 8
n
2 5 17 39 74 125 195 287
3 40 285 1 140 3 370 8 820 17 535 33 880
4 220 3 240 22 176 100 000 345 060 987 840 2 464 000
5 1 040 32 130 379 776 2 631 500 12 931 920 49 999 110
6 4 560 301 239 6 220 032 66 768 750 470 221 200
7 19 200 2 757 807 100 279 728 1 676 043 750
8 79 040 24 994 494 1 608 794 112
9 321 280 225 584 676
10 1 296 640 2 032 525 629
11 5 212 160 1 120 813 409
12 20 904 960
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Conclusions

� Qudits are much like qubits

– Qubits: Optimal # of two-qubit gates is Θ � 4n �

– Clever constructions: Θ � d2n � , not O � n2d2n � and Ω � d2n �

� Tensor structures are not fungible

� Qudit emulation with qubits is bad design

� Complexities Θ � d2n � , dits vs Θ � 22n � , bits: asymptotically dits are no
better & no worse
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http://www.arxiv.org Coordinates

� QR techniques, first use of CINC: q-ph/0002033

� Qudit Fourier transforms: q-ph/9702028

� Restricted one-qudit universality: q-ph/0407223

� Asymptotically Optimal n-qudit universality: q-ph/0410116
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